Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396748

RESUMO

Dehydroepiandrosterone (DHEA), a precursor of steroid sex hormones, is synthesized by steroid 17-alpha-hydroxylase/17,20-lyase (CYP17A1) with the participation of microsomal cytochrome b5 (CYB5A) and cytochrome P450 reductase (CPR), followed by sulfation by two cytosolic sulfotransferases, SULT1E1 and SULT2A1, for storage and transport to tissues in which its synthesis is not available. The involvement of CYP17A1 and SULTs in these successive reactions led us to consider the possible interaction of SULTs with DHEA-producing CYP17A1 and its redox partners. Text mining analysis, protein-protein network analysis, and gene co-expression analysis were performed to determine the relationships between SULTs and microsomal CYP isoforms. For the first time, using surface plasmon resonance, we detected interactions between CYP17A1 and SULT2A1 or SULT1E1. SULTs also interacted with CYB5A and CPR. The interaction parameters of SULT2A1/CYP17A1 and SULT2A1/CYB5A complexes seemed to be modulated by 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Affinity purification, combined with mass spectrometry (AP-MS), allowed us to identify a spectrum of SULT1E1 potential protein partners, including CYB5A. We showed that the enzymatic activity of SULTs increased in the presence of only CYP17A1 or CYP17A1 and CYB5A mixture. The structures of CYP17A1/SULT1E1 and CYB5A/SULT1E1 complexes were predicted. Our data provide novel fundamental information about the organization of microsomal CYP-dependent macromolecular complexes.


Assuntos
Complexos Multienzimáticos , Esteroide 17-alfa-Hidroxilase , Sulfato de Desidroepiandrosterona , Complexos Multienzimáticos/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Oxirredução , Esteroides , Ressonância de Plasmônio de Superfície , Sulfotransferases/genética , Sulfotransferases/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1866(3): 184286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272204

RESUMO

Cytochromes P450 (CYP) are a family of membrane proteins involved in the production of endogenous molecules and the metabolism of xenobiotics. It is well-known that the composition of the membrane can influence the activity and orientation of CYP proteins. However, little is known about how membrane composition affects the ligand binding properties of CYP. In this study, we utilized surface plasmon resonance and fluorescence lifetime analysis to examine the impact of membrane micro-environment composition on the interaction between human microsomal CYP51 (CYP51A1) and its inhibitor, luteolin 7,3'-disulphate (LDS). We observed that membranes containing cholesterol or sphingomyelin exhibited the lowest apparent equilibrium dissociation constant for the CYP51A1-LDS complex. Additionally, the tendency for relation between kinetic parameters of the CYP51A1-LDS complex and membrane viscosity and overall charge was observed. These findings suggest that the specific composition of the membrane, particularly the presence of cholesterol and sphingomyelin, plays a vital role in regulating the interaction between CYP enzymes and their ligands.


Assuntos
Sistema Enzimático do Citocromo P-450 , Esfingomielinas , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Colesterol/metabolismo , Luteolina/farmacologia
3.
Biomedicines ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001874

RESUMO

Due to the increasing prevalence of fungal diseases caused by fungi of the genus Candida and the development of pathogen resistance to available drugs, the need to find new effective antifungal agents has increased. Azole antifungals, which are inhibitors of sterol-14α-demethylase or CYP51, have been widely used in the treatment of fungal infections over the past two decades. Of special interest is the study of C. krusei CYP51, since this fungus exhibit resistance not only to azoles, but also to other antifungal drugs and there is no available information about the ligand-binding properties of CYP51 of this pathogen. We expressed recombinant C. krusei CYP51 in E. coli cells and obtained a highly purified protein. Application of the method of spectrophotometric titration allowed us to study the interaction of C. krusei CYP51 with various ligands. In the present work, the interaction of C. krusei CYP51 with azole inhibitors, and natural and synthesized steroid derivatives was evaluated. The obtained data indicate that the resistance of C. krusei to azoles is not due to the structural features of CYP51 of this microorganism, but rather to another mechanism. Promising ligands that demonstrated sufficiently strong binding in the micromolar range to C. krusei CYP51 were identified, including compounds 99 (Kd = 1.02 ± 0.14 µM) and Ch-4 (Kd = 6.95 ± 0.80 µM). The revealed structural features of the interaction of ligands with the active site of C. krusei CYP51 can be taken into account in the further development of new selective modulators of the activity of this enzyme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...